Search results for "Symplectic matrix"
showing 3 items of 3 documents
On the geometry of the characteristic class of a star product on a symplectic manifold
2001
The characteristic class of a star product on a symplectic manifold appears as the class of a deformation of a given symplectic connection, as described by Fedosov. In contrast, one usually thinks of the characteristic class of a star product as the class of a deformation of the Poisson structure (as in Kontsevich's work). In this paper, we present, in the symplectic framework, a natural procedure for constructing a star product by directly quantizing a deformation of the symplectic structure. Basically, in Fedosov's recursive formula for the star product with zero characteristic class, we replace the symplectic structure by one of its formal deformations in the parameter $\hbar$. We then s…
A Symplectic Kovacic's Algorithm in Dimension 4
2018
Let $L$ be a $4$th order differential operator with coefficients in $\mathbb{K}(z)$, with $\mathbb{K}$ a computable algebraically closed field. The operator $L$ is called symplectic when up to rational gauge transformation, the fundamental matrix of solutions $X$ satisfies $X^t J X=J$ where $J$ is the standard symplectic matrix. It is called projectively symplectic when it is projectively equivalent to a symplectic operator. We design an algorithm to test if $L$ is projectively symplectic. Furthermore, based on Kovacic's algorithm, we design an algorithm that computes Liouvillian solutions of projectively symplectic operators of order $4$. Moreover, using Klein's Theorem, algebraic solution…
Symplectic Applicability of Lagrangian Surfaces
2009
We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equa- tions. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.