Search results for "Symplectic matrix"

showing 3 items of 3 documents

On the geometry of the characteristic class of a star product on a symplectic manifold

2001

The characteristic class of a star product on a symplectic manifold appears as the class of a deformation of a given symplectic connection, as described by Fedosov. In contrast, one usually thinks of the characteristic class of a star product as the class of a deformation of the Poisson structure (as in Kontsevich's work). In this paper, we present, in the symplectic framework, a natural procedure for constructing a star product by directly quantizing a deformation of the symplectic structure. Basically, in Fedosov's recursive formula for the star product with zero characteristic class, we replace the symplectic structure by one of its formal deformations in the parameter $\hbar$. We then s…

Statistical and Nonlinear PhysicsGeometrySymplectic representationSymplectic matrixSymplectic vector spaceMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)SymplectomorphismMoment mapMathematics::Symplectic GeometryMathematical PhysicsSymplectic geometryQuantum cohomologySymplectic manifoldMathematics
researchProduct

A Symplectic Kovacic's Algorithm in Dimension 4

2018

Let $L$ be a $4$th order differential operator with coefficients in $\mathbb{K}(z)$, with $\mathbb{K}$ a computable algebraically closed field. The operator $L$ is called symplectic when up to rational gauge transformation, the fundamental matrix of solutions $X$ satisfies $X^t J X=J$ where $J$ is the standard symplectic matrix. It is called projectively symplectic when it is projectively equivalent to a symplectic operator. We design an algorithm to test if $L$ is projectively symplectic. Furthermore, based on Kovacic's algorithm, we design an algorithm that computes Liouvillian solutions of projectively symplectic operators of order $4$. Moreover, using Klein's Theorem, algebraic solution…

[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematicsDynamical Systems (math.DS)Differential operator01 natural sciencesSymplectic matrixDifferential Galois theory34M15Operator (computer programming)Fundamental matrix (linear differential equation)Mathematics - Symplectic Geometry0103 physical sciencesFOS: MathematicsSymplectic Geometry (math.SG)010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsAlgebraically closed fieldAlgebraic numberMathematics::Symplectic GeometryAlgorithmMathematicsSymplectic geometryProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
researchProduct

Symplectic Applicability of Lagrangian Surfaces

2009

We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equa- tions. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.

Mathematics - Differential GeometryPure mathematicsdifferential invariantsSymplectic vector spaceFOS: MathematicsSymplectomorphismMoment mapMathematics::Symplectic GeometryMathematical PhysicsMathematicsSymplectic manifoldapplicabilityLagrangian surfaceslcsh:MathematicsMathematical analysisSymplectic representationmoving frameslcsh:QA1-939Symplectic matrixaffine symplectic geometryAffine geometry of curvesDifferential Geometry (math.DG)Lagrangian surfaces; affine symplectic geometry; moving frames; differential invariants; applicability.Geometry and TopologyAnalysisSymplectic geometry
researchProduct